/*
  Glaurung, a UCI chess playing engine.
  Copyright (C) 2004-2008 Tord Romstad

  Glaurung is free software: you can redistribute it and/or modify
  it under the terms of the GNU General Public License as published by
  the Free Software Foundation, either version 3 of the License, or
  (at your option) any later version.
  
  Glaurung is distributed in the hope that it will be useful,
  but WITHOUT ANY WARRANTY; without even the implied warranty of
  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  GNU General Public License for more details.
  
  You should have received a copy of the GNU General Public License
  along with this program.  If not, see <http://www.gnu.org/licenses/>.
*/


////
//// Includes
////

#include <cassert>

#include "bitbase.h"
#include "endgame.h"


////
//// Constants and variables
////

/// Evaluation functions

// Generic "mate lone king" eval:
KXKEvaluationFunction EvaluateKXK = KXKEvaluationFunction(WHITE);
KXKEvaluationFunction EvaluateKKX = KXKEvaluationFunction(BLACK);

// KBN vs K:
KBNKEvaluationFunction EvaluateKBNK = KBNKEvaluationFunction(WHITE);
KBNKEvaluationFunction EvaluateKKBN = KBNKEvaluationFunction(BLACK);

// KP vs K:
KPKEvaluationFunction EvaluateKPK = KPKEvaluationFunction(WHITE);
KPKEvaluationFunction EvaluateKKP = KPKEvaluationFunction(BLACK);

// KR vs KP:
KRKPEvaluationFunction EvaluateKRKP = KRKPEvaluationFunction(WHITE);
KRKPEvaluationFunction EvaluateKPKR = KRKPEvaluationFunction(BLACK);

// KR vs KB:
KRKBEvaluationFunction EvaluateKRKB = KRKBEvaluationFunction(WHITE);
KRKBEvaluationFunction EvaluateKBKR = KRKBEvaluationFunction(BLACK);

// KR vs KN:
KRKNEvaluationFunction EvaluateKRKN = KRKNEvaluationFunction(WHITE);
KRKNEvaluationFunction EvaluateKNKR = KRKNEvaluationFunction(BLACK);

// KQ vs KR:
KQKREvaluationFunction EvaluateKQKR = KQKREvaluationFunction(WHITE);
KQKREvaluationFunction EvaluateKRKQ = KQKREvaluationFunction(BLACK);

// KBB vs KN:
KBBKNEvaluationFunction EvaluateKBBKN = KBBKNEvaluationFunction(WHITE);
KBBKNEvaluationFunction EvaluateKNKBB = KBBKNEvaluationFunction(BLACK);

// K and two minors vs K and one or two minors:
KmmKmEvaluationFunction EvaluateKmmKm = KmmKmEvaluationFunction(WHITE);


/// Scaling functions

// KBP vs K:
KBPKScalingFunction ScaleKBPK = KBPKScalingFunction(WHITE);
KBPKScalingFunction ScaleKKBP = KBPKScalingFunction(BLACK);

// KQ vs KRP:
KQKRPScalingFunction ScaleKQKRP = KQKRPScalingFunction(WHITE);
KQKRPScalingFunction ScaleKRPKQ = KQKRPScalingFunction(BLACK);

// KRP vs KR:
KRPKRScalingFunction ScaleKRPKR = KRPKRScalingFunction(WHITE);
KRPKRScalingFunction ScaleKRKRP = KRPKRScalingFunction(BLACK);

// KRPP vs KRP:
KRPPKRPScalingFunction ScaleKRPPKRP = KRPPKRPScalingFunction(WHITE);
KRPPKRPScalingFunction ScaleKRPKRPP = KRPPKRPScalingFunction(BLACK);

// King and pawns vs king:
KPsKScalingFunction ScaleKPsK = KPsKScalingFunction(WHITE);
KPsKScalingFunction ScaleKKPs = KPsKScalingFunction(BLACK);

// KBP vs KB:
KBPKBScalingFunction ScaleKBPKB = KBPKBScalingFunction(WHITE);
KBPKBScalingFunction ScaleKBKBP = KBPKBScalingFunction(BLACK);

// KBP vs KN:
KBPKNScalingFunction ScaleKBPKN = KBPKNScalingFunction(WHITE);
KBPKNScalingFunction ScaleKNKBP = KBPKNScalingFunction(BLACK);

// KNP vs K:
KNPKScalingFunction ScaleKNPK = KNPKScalingFunction(WHITE);
KNPKScalingFunction ScaleKKNP = KNPKScalingFunction(BLACK);

// KPKP
KPKPScalingFunction ScaleKPKPw = KPKPScalingFunction(WHITE);
KPKPScalingFunction ScaleKPKPb = KPKPScalingFunction(BLACK);


////
//// Local definitions
////

namespace {

  // Table used to drive the defending king towards the edge of the board
  // in KX vs K and KQ vs KR endgames:
  const uint8_t MateTable[64] = {
    100, 90, 80, 70, 70, 80, 90, 100,
    90, 70, 60, 50, 50, 60, 70, 90,
    80, 60, 40, 30, 30, 40, 60, 80,
    70, 50, 30, 20, 20, 30, 50, 70,
    70, 50, 30, 20, 20, 30, 50, 70,
    80, 60, 40, 30, 30, 40, 60, 80,
    90, 70, 60, 50, 50, 60, 70, 90,
    100, 90, 80, 70, 70, 80, 90, 100,
  };

  // Table used to drive the defending king towards a corner square of the
  // right color in KBN vs K endgames:
  const uint8_t KBNKMateTable[64] = {
    200, 190, 180, 170, 160, 150, 140, 130,
    190, 180, 170, 160, 150, 140, 130, 140,
    180, 170, 155, 140, 140, 125, 140, 150,
    170, 160, 140, 120, 110, 140, 150, 160,
    160, 150, 140, 110, 120, 140, 160, 170,
    150, 140, 125, 140, 140, 155, 170, 180,
    140, 130, 140, 150, 160, 170, 180, 190,
    130, 140, 150, 160, 170, 180, 190, 200
  };

  // The attacking side is given a descending bonus based on distance between
  // the two kings in basic endgames:
  const int DistanceBonus[8] = {0, 0, 100, 80, 60, 40, 20, 10};

  // Bitbase for KP vs K:
  uint8_t KPKBitbase[24576];

  // Penalty for big distance between king and knight for the defending king
  // and knight in KR vs KN endgames:
  const int KRKNKingKnightDistancePenalty[8] = { 0, 0, 4, 10, 20, 32, 48, 70 };

  // Various inline functions for accessing the above arrays:
  
  inline Value mate_table(Square s) {
    return Value(MateTable[s]);
  }

  inline Value kbnk_mate_table(Square s) {
    return Value(KBNKMateTable[s]);
  }

  inline Value distance_bonus(int d) {
    return Value(DistanceBonus[d]);
  }

  inline Value krkn_king_knight_distance_penalty(int d) {
    return Value(KRKNKingKnightDistancePenalty[d]);
  }

  // Function for probing the KP vs K bitbase:
  int probe_kpk(Square wksq, Square wpsq, Square bksq, Color stm);

}
    

////
//// Functions
////

/// Constructors

EndgameEvaluationFunction::EndgameEvaluationFunction(Color c) {
  strongerSide = c;
  weakerSide = opposite_color(strongerSide);
}

KXKEvaluationFunction::KXKEvaluationFunction(Color c) : EndgameEvaluationFunction(c) { }
KBNKEvaluationFunction::KBNKEvaluationFunction(Color c) : EndgameEvaluationFunction(c) { }
KPKEvaluationFunction::KPKEvaluationFunction(Color c) : EndgameEvaluationFunction(c) { }
KRKPEvaluationFunction::KRKPEvaluationFunction(Color c) : EndgameEvaluationFunction(c) { }
KRKBEvaluationFunction::KRKBEvaluationFunction(Color c) : EndgameEvaluationFunction(c) { }
KRKNEvaluationFunction::KRKNEvaluationFunction(Color c) : EndgameEvaluationFunction(c) { }
KQKREvaluationFunction::KQKREvaluationFunction(Color c) : EndgameEvaluationFunction(c) { }
KBBKNEvaluationFunction::KBBKNEvaluationFunction(Color c) : EndgameEvaluationFunction(c) { }
KmmKmEvaluationFunction::KmmKmEvaluationFunction(Color c) : EndgameEvaluationFunction(c) { }


ScalingFunction::ScalingFunction(Color c) {
  strongerSide = c;
  weakerSide = opposite_color(c);
}

KBPKScalingFunction::KBPKScalingFunction(Color c) : ScalingFunction(c) { }
KQKRPScalingFunction::KQKRPScalingFunction(Color c) : ScalingFunction(c) { }
KRPKRScalingFunction::KRPKRScalingFunction(Color c) : ScalingFunction(c) { }
KRPPKRPScalingFunction::KRPPKRPScalingFunction(Color c) : ScalingFunction(c) { }
KPsKScalingFunction::KPsKScalingFunction(Color c) : ScalingFunction(c) { }
KBPKBScalingFunction::KBPKBScalingFunction(Color c) : ScalingFunction(c) { }
KBPKNScalingFunction::KBPKNScalingFunction(Color c) : ScalingFunction(c) { }
KNPKScalingFunction::KNPKScalingFunction(Color c) : ScalingFunction(c) { }
KPKPScalingFunction::KPKPScalingFunction(Color c) : ScalingFunction(c) { }


/// Mate with KX vs K.  This function is used to evaluate positions with
/// King and plenty of material vs a lone king.  It simply gives the
/// attacking side a bonus for driving the defending king towards the edge
/// of the board, and for keeping the distance between the two kings small.

Value KXKEvaluationFunction::apply(const Position &pos) {

  assert(pos.non_pawn_material(weakerSide) == Value(0));
  assert(pos.pawn_count(weakerSide) == Value(0));

  Square winnerKSq = pos.king_square(strongerSide);
  Square loserKSq = pos.king_square(weakerSide);

  Value result =
    pos.non_pawn_material(strongerSide) +
    pos.pawn_count(strongerSide) * PawnValueEndgame +
    mate_table(loserKSq) +
    distance_bonus(square_distance(winnerKSq, loserKSq));

  if(pos.queen_count(strongerSide) > 0 || pos.rook_count(strongerSide) > 0 ||
     pos.bishop_count(strongerSide) > 1)
    // TODO: check for two equal-colored bishops!
    result += VALUE_KNOWN_WIN;

  return (strongerSide == pos.side_to_move())? result : -result;
}


/// Mate with KBN vs K.  This is similar to KX vs K, but we have to drive the
/// defending king towards a corner square of the right color.
                  
Value KBNKEvaluationFunction::apply(const Position &pos) {

  assert(pos.non_pawn_material(weakerSide) == Value(0));
  assert(pos.pawn_count(weakerSide) == Value(0));
  assert(pos.non_pawn_material(strongerSide) ==
         KnightValueMidgame + BishopValueMidgame);
  assert(pos.bishop_count(strongerSide) == 1);
  assert(pos.knight_count(strongerSide) == 1);
  assert(pos.pawn_count(strongerSide) == 0);

  Square winnerKSq = pos.king_square(strongerSide);
  Square loserKSq = pos.king_square(weakerSide);
  Square bishopSquare = pos.bishop_list(strongerSide, 0);

  if(square_color(bishopSquare) == BLACK) {
    winnerKSq = flop_square(winnerKSq);
    loserKSq = flop_square(loserKSq);
  }

  Value result =
    VALUE_KNOWN_WIN + distance_bonus(square_distance(winnerKSq, loserKSq)) +
    kbnk_mate_table(loserKSq);

  return (strongerSide == pos.side_to_move())? result : -result;
}


/// KP vs K.  This endgame is evaluated with the help of a bitbase.

Value KPKEvaluationFunction::apply(const Position &pos) {

  assert(pos.non_pawn_material(strongerSide) == Value(0));
  assert(pos.non_pawn_material(weakerSide) == Value(0));
  assert(pos.pawn_count(strongerSide) == 1);
  assert(pos.pawn_count(weakerSide) == 0);
  
  Square wksq, bksq, wpsq;
  Color stm;

  if(strongerSide == WHITE) {
    wksq = pos.king_square(WHITE);
    bksq = pos.king_square(BLACK);
    wpsq = pos.pawn_list(WHITE, 0);
    stm = pos.side_to_move();
  }
  else {
    wksq = flip_square(pos.king_square(BLACK));
    bksq = flip_square(pos.king_square(WHITE));
    wpsq = flip_square(pos.pawn_list(BLACK, 0));
    stm = opposite_color(pos.side_to_move());
  }

  if(square_file(wpsq) >= FILE_E) {
    wksq = flop_square(wksq);
    bksq = flop_square(bksq);
    wpsq = flop_square(wpsq);
  }

  if(probe_kpk(wksq, wpsq, bksq, stm)) {
    Value result =
      VALUE_KNOWN_WIN + PawnValueEndgame + Value(square_rank(wpsq));
    return (strongerSide == pos.side_to_move())? result : -result;
  }

  return VALUE_DRAW;
}


/// KR vs KP.  This is a somewhat tricky endgame to evaluate precisely without
/// a bitbase.  The function below returns drawish scores when the pawn is
/// far advanced with support of the king, while the attacking king is far
/// away.

Value KRKPEvaluationFunction::apply(const Position &pos) {

  assert(pos.non_pawn_material(strongerSide) == RookValueMidgame);
  assert(pos.pawn_count(strongerSide) == 0);
  assert(pos.non_pawn_material(weakerSide) == 0);
  assert(pos.pawn_count(weakerSide) == 1);

  Square wksq, wrsq, bksq, bpsq;
  int tempo = (pos.side_to_move() == strongerSide);

  wksq = pos.king_square(strongerSide);
  wrsq = pos.rook_list(strongerSide, 0);
  bksq = pos.king_square(weakerSide);
  bpsq = pos.pawn_list(weakerSide, 0);

  if(strongerSide == BLACK) {
    wksq = flip_square(wksq);
    wrsq = flip_square(wrsq);
    bksq = flip_square(bksq);
    bpsq = flip_square(bpsq);
  }

  Square queeningSq = make_square(square_file(bpsq), RANK_1);
  Value result;

  // If the stronger side's king is in front of the pawn, it's a win:
  if(wksq < bpsq && square_file(wksq) == square_file(bpsq))
    result = RookValueEndgame - Value(square_distance(wksq, bpsq));

  // If the weaker side's king is too far from the pawn and the rook,
  // it's a win:
  else if(square_distance(bksq, bpsq) - (tempo^1) >= 3 &&
          square_distance(bksq, wrsq) >= 3)
    result = RookValueEndgame - Value(square_distance(wksq, bpsq));

  // If the pawn is far advanced and supported by the defending king,
  // the position is drawish:
  else if(square_rank(bksq) <= RANK_3 && square_distance(bksq, bpsq) == 1 &&
          square_rank(wksq) >= RANK_4 &&
          square_distance(wksq, bpsq) - tempo > 2)
    result = Value(80 - square_distance(wksq, bpsq) * 8);

  else
    result = Value(200)
      - Value(square_distance(wksq, bpsq + DELTA_S) * 8)
      + Value(square_distance(bksq, bpsq + DELTA_S) * 8)
      + Value(square_distance(bpsq, queeningSq) * 8);

  return (strongerSide == pos.side_to_move())? result : -result;
}


/// KR vs KB.  This is very simple, and always returns drawish scores.  The
/// score is slightly bigger when the defending king is close to the edge.

Value KRKBEvaluationFunction::apply(const Position &pos) {

  assert(pos.non_pawn_material(strongerSide) == RookValueMidgame);
  assert(pos.pawn_count(strongerSide) == 0);
  assert(pos.non_pawn_material(weakerSide) == BishopValueMidgame);
  assert(pos.pawn_count(weakerSide) == 0);
  assert(pos.bishop_count(weakerSide) == 1);

  Value result = mate_table(pos.king_square(weakerSide));
  return (pos.side_to_move() == strongerSide)? result : -result;
}


/// KR vs KN.  The attacking side has slightly better winning chances than
/// in KR vs KB, particularly if the king and the knight are far apart.

Value KRKNEvaluationFunction::apply(const Position &pos) {

  assert(pos.non_pawn_material(strongerSide) == RookValueMidgame);
  assert(pos.pawn_count(strongerSide) == 0);
  assert(pos.non_pawn_material(weakerSide) == KnightValueMidgame);
  assert(pos.pawn_count(weakerSide) == 0);
  assert(pos.knight_count(weakerSide) == 1);

  Square defendingKSq = pos.king_square(weakerSide);
  Square nSq = pos.knight_list(weakerSide, 0);

  Value result = Value(10) + mate_table(defendingKSq) +
    krkn_king_knight_distance_penalty(square_distance(defendingKSq, nSq));

  return (strongerSide == pos.side_to_move())? result : -result;
}


/// KQ vs KR.  This is almost identical to KX vs K:  We give the attacking
/// king a bonus for having the kings close together, and for forcing the
/// defending king towards the edge.  If we also take care to avoid null move
/// for the defending side in the search, this is usually sufficient to be
/// able to win KQ vs KR.

Value KQKREvaluationFunction::apply(const Position &pos) {
  assert(pos.non_pawn_material(strongerSide) == QueenValueMidgame);
  assert(pos.pawn_count(strongerSide) == 0);
  assert(pos.non_pawn_material(weakerSide) == RookValueMidgame);
  assert(pos.pawn_count(weakerSide) == 0);

  Square winnerKSq = pos.king_square(strongerSide);
  Square loserKSq = pos.king_square(weakerSide);
  
  Value result = QueenValueEndgame - RookValueEndgame +
    mate_table(loserKSq) + distance_bonus(square_distance(winnerKSq, loserKSq));

  return (strongerSide == pos.side_to_move())? result : -result;
}


Value KBBKNEvaluationFunction::apply(const Position &pos) {
  assert(pos.bishop_count(strongerSide) == 2);
  assert(pos.non_pawn_material(strongerSide) == 2*BishopValueMidgame);
  assert(pos.knight_count(weakerSide) == 1);
  assert(pos.non_pawn_material(weakerSide) == KnightValueMidgame);
  assert(pos.pawns() == EmptyBoardBB);

  Value result = BishopValueEndgame;
  Square wksq = pos.king_square(strongerSide);
  Square bksq = pos.king_square(weakerSide);
  Square nsq = pos.knight_list(weakerSide, 0);

  // Bonus for attacking king close to defending king:
  result += distance_bonus(square_distance(wksq, bksq));

  // Bonus for driving the defending king and knight apart:
  result += Value(square_distance(bksq, nsq) * 32);

  // Bonus for restricting the knight's mobility:
  result += Value((8 - count_1s_max_15(pos.knight_attacks(nsq))) * 8);

  return (strongerSide == pos.side_to_move())? result : -result;
}


Value KmmKmEvaluationFunction::apply(const Position &pos) {
  return Value(0);
}


/// KBPKScalingFunction scales endgames where the stronger side has king,
/// bishop and one or more pawns.  It checks for draws with rook pawns and a
/// bishop of the wrong color.  If such a draw is detected, ScaleFactor(0) is
/// returned.  If not, the return value is SCALE_FACTOR_NONE, i.e. no scaling
/// will be used.

ScaleFactor KBPKScalingFunction::apply(const Position &pos) {
  assert(pos.non_pawn_material(strongerSide) == BishopValueMidgame);
  assert(pos.bishop_count(strongerSide) == 1);
  assert(pos.pawn_count(strongerSide) >= 1);

  // No assertions about the material of weakerSide, because we want draws to
  // be detected even when the weaker side has some pawns.

  Bitboard pawns = pos.pawns(strongerSide);
  File pawnFile = square_file(pos.pawn_list(strongerSide, 0));

  if((pawnFile == FILE_A || pawnFile == FILE_H) &&
     (pawns & ~file_bb(pawnFile)) == EmptyBoardBB) {
    // All pawns are on a single rook file.

    Square bishopSq = pos.bishop_list(strongerSide, 0);
    Square queeningSq =
      relative_square(strongerSide, make_square(pawnFile, RANK_8));
    Square kingSq = pos.king_square(weakerSide);

    if(square_color(queeningSq) != square_color(bishopSq) &&
       file_distance(square_file(kingSq), pawnFile) <= 1) {
      // The bishop has the wrong color, and the defending king is on the
      // file of the pawn(s) or the neighboring file.  Find the rank of the
      // frontmost pawn:

      Rank rank;
      if(strongerSide == WHITE) {
        for(rank = RANK_7; (rank_bb(rank) & pawns) == EmptyBoardBB; rank--);
        assert(rank >= RANK_2 && rank <= RANK_7);
      }
      else {
        for(rank = RANK_2; (rank_bb(rank) & pawns) == EmptyBoardBB; rank++);
        rank = Rank(rank^7);  // HACK
        assert(rank >= RANK_2 && rank <= RANK_7);
      }
      // If the defending king has distance 1 to the promotion square or
      // is placed somewhere in front of the pawn, it's a draw.
      if(square_distance(kingSq, queeningSq) <= 1 ||
         pawn_rank(strongerSide, kingSq) >= rank)
        return ScaleFactor(0);
    }
  }
  return SCALE_FACTOR_NONE;
}


/// KQKRPScalingFunction scales endgames where the stronger side has only
/// king and queen, while the weaker side has at least a rook and a pawn.
/// It tests for fortress draws with a rook on the third rank defended by
/// a pawn.

ScaleFactor KQKRPScalingFunction::apply(const Position &pos) {
  assert(pos.non_pawn_material(strongerSide) == QueenValueMidgame);
  assert(pos.queen_count(strongerSide) == 1);
  assert(pos.pawn_count(strongerSide) == 0);
  assert(pos.rook_count(weakerSide) == 1);
  assert(pos.pawn_count(weakerSide) >= 1);

  Square kingSq = pos.king_square(weakerSide);
  if(pawn_rank(weakerSide, kingSq) <= RANK_2 &&
     pawn_rank(weakerSide, pos.king_square(strongerSide)) >= RANK_4 &&
     (pos.rooks(weakerSide) & relative_rank_bb(weakerSide, RANK_3)) &&
     (pos.pawns(weakerSide) & relative_rank_bb(weakerSide, RANK_2)) &&
     (pos.king_attacks(kingSq) & pos.pawns(weakerSide))) {
    Square rsq = pos.rook_list(weakerSide, 0);
    if(pos.pawn_attacks(strongerSide, rsq) & pos.pawns(weakerSide))
      return ScaleFactor(0);
  }
  return SCALE_FACTOR_NONE;
}


/// KRPKRScalingFunction scales KRP vs KR endgames.  This function knows a
/// handful of the most important classes of drawn positions, but is far
/// from perfect.  It would probably be a good idea to add more knowledge
/// in the future.
///
/// It would also be nice to rewrite the actual code for this function,
/// which is mostly copied from Glaurung 1.x, and not very pretty.

ScaleFactor KRPKRScalingFunction::apply(const Position &pos) {
  assert(pos.non_pawn_material(strongerSide) == RookValueMidgame);
  assert(pos.pawn_count(strongerSide) == 1);
  assert(pos.non_pawn_material(weakerSide) == RookValueMidgame);
  assert(pos.pawn_count(weakerSide) == 0);

  Square wksq = pos.king_square(strongerSide);
  Square wrsq = pos.rook_list(strongerSide, 0);
  Square wpsq = pos.pawn_list(strongerSide, 0);
  Square bksq = pos.king_square(weakerSide);
  Square brsq = pos.rook_list(weakerSide, 0);

  // Orient the board in such a way that the stronger side is white, and the
  // pawn is on the left half of the board:
  if(strongerSide == BLACK) {
    wksq = flip_square(wksq);
    wrsq = flip_square(wrsq);
    wpsq = flip_square(wpsq);
    bksq = flip_square(bksq);
    brsq = flip_square(brsq);
  }
  if(square_file(wpsq) > FILE_D) {
    wksq = flop_square(wksq);
    wrsq = flop_square(wrsq);
    wpsq = flop_square(wpsq);
    bksq = flop_square(bksq);
    brsq = flop_square(brsq);
  }

  File f = square_file(wpsq);
  Rank r = square_rank(wpsq);
  Square queeningSq = make_square(f, RANK_8);
  int tempo = (pos.side_to_move() == strongerSide);

  // If the pawn is not too far advanced and the defending king defends the
  // queening square, use the third-rank defence:
  if(r <= RANK_5 && square_distance(bksq, queeningSq) <= 1 && wksq <= SQ_H5 &&
     (square_rank(brsq) == RANK_6 || (r <= RANK_3 &&
                                      square_rank(wrsq) != RANK_6)))
    return ScaleFactor(0);

  // The defending side saves a draw by checking from behind in case the pawn
  // has advanced to the 6th rank with the king behind.
  if(r == RANK_6 && square_distance(bksq, queeningSq) <= 1 &&
     square_rank(wksq) + tempo <= RANK_6 &&
     (square_rank(brsq) == RANK_1 ||
      (!tempo && abs(square_file(brsq) - f) >= 3)))
    return ScaleFactor(0);

  if(r >= RANK_6 && bksq == queeningSq && square_rank(brsq) == RANK_1 &&
     (!tempo || square_distance(wksq, wpsq) >= 2))
    return ScaleFactor(0);

  // White pawn on a7 and rook on a8 is a draw if black's king is on g7 or h7
  // and the black rook is behind the pawn.
  if(wpsq == SQ_A7 && wrsq == SQ_A8 && (bksq == SQ_H7 || bksq == SQ_G7) &&
     square_file(brsq) == FILE_A &&
     (square_rank(brsq) <= RANK_3 || square_file(wksq) >= FILE_D ||
      square_rank(wksq) <= RANK_5))
    return ScaleFactor(0);

  // If the defending king blocks the pawn and the attacking king is too far
  // away, it's a draw.
  if(r <= RANK_5 && bksq == wpsq + DELTA_N &&
     square_distance(wksq, wpsq) - tempo >= 2 &&
     square_distance(wksq, brsq) - tempo >= 2)
    return ScaleFactor(0);

  // Pawn on the 7th rank supported by the rook from behind usually wins if the
  // attacking king is closer to the queening square than the defending king,
  // and the defending king cannot gain tempi by threatening the attacking
  // rook.
  if(r == RANK_7 && f != FILE_A && square_file(wrsq) == f
     && wrsq != queeningSq
     && (square_distance(wksq, queeningSq) <
         square_distance(bksq, queeningSq) - 2 + tempo)
     && (square_distance(wksq, queeningSq) <
         square_distance(bksq, wrsq) + tempo))
    return ScaleFactor(SCALE_FACTOR_MAX
                       - 2 * square_distance(wksq, queeningSq));

  // Similar to the above, but with the pawn further back:
  if(f != FILE_A && square_file(wrsq) == f && wrsq < wpsq
     && (square_distance(wksq, queeningSq) <
         square_distance(bksq, queeningSq) - 2 + tempo)
     && (square_distance(wksq, wpsq + DELTA_N) <
         square_distance(bksq, wpsq + DELTA_N) - 2 + tempo)
     && (square_distance(bksq, wrsq) + tempo >= 3
         || (square_distance(wksq, queeningSq) <
             square_distance(bksq, wrsq) + tempo
             && (square_distance(wksq, wpsq + DELTA_N) <
                 square_distance(bksq, wrsq) + tempo))))
    return
      ScaleFactor(SCALE_FACTOR_MAX
                  - (8 * square_distance(wpsq, queeningSq) +
                     2 * square_distance(wksq, queeningSq)));

  // If the pawn is not far advanced, and the defending king is somewhere in
  // the pawn's path, it's probably a draw:
  if(r <= RANK_4 && bksq > wpsq) {
    if(square_file(bksq) == square_file(wpsq))
      return ScaleFactor(10);
    if(abs(square_file(bksq) - square_file(wpsq)) == 1
       && square_distance(wksq, bksq) > 2)
      return ScaleFactor(24 - 2 * square_distance(wksq, bksq));
  }

  return SCALE_FACTOR_NONE;
}


/// KRPPKRPScalingFunction scales KRPP vs KRP endgames.  There is only a
/// single pattern:  If the stronger side has no pawns and the defending king
/// is actively placed, the position is drawish.

ScaleFactor KRPPKRPScalingFunction::apply(const Position &pos) {
  assert(pos.non_pawn_material(strongerSide) == RookValueMidgame);
  assert(pos.pawn_count(strongerSide) == 2);
  assert(pos.non_pawn_material(weakerSide) == RookValueMidgame);
  assert(pos.pawn_count(weakerSide) == 1);

  Square wpsq1 = pos.pawn_list(strongerSide, 0);
  Square wpsq2 = pos.pawn_list(strongerSide, 1);
  Square bksq = pos.king_square(weakerSide);

  // Does the stronger side have a passed pawn?
  if(pos.pawn_is_passed(strongerSide, wpsq1) ||
     pos.pawn_is_passed(strongerSide, wpsq2))
    return SCALE_FACTOR_NONE;

  Rank r = Max(pawn_rank(strongerSide, wpsq1), pawn_rank(strongerSide, wpsq2));

  if(file_distance(bksq, wpsq1) <= 1 && file_distance(bksq, wpsq2) <= 1
     && pawn_rank(strongerSide, bksq) > r) {
    switch(r) {

    case RANK_2: return ScaleFactor(10);
    case RANK_3: return ScaleFactor(10);
    case RANK_4: return ScaleFactor(15);
    case RANK_5: return ScaleFactor(20);
    case RANK_6: return ScaleFactor(40);
    default: assert(false);

    }
  }
  return SCALE_FACTOR_NONE;
}


/// KPsKScalingFunction scales endgames with king and two or more pawns
/// against king.  There is just a single rule here:  If all pawns are on
/// the same rook file and are blocked by the defending king, it's a draw.

ScaleFactor KPsKScalingFunction::apply(const Position &pos) {
  assert(pos.non_pawn_material(strongerSide) == Value(0));
  assert(pos.pawn_count(strongerSide) >= 2);
  assert(pos.non_pawn_material(weakerSide) == Value(0));
  assert(pos.pawn_count(weakerSide) == 0);

  Bitboard pawns = pos.pawns(strongerSide);

  // Are all pawns on the 'a' file?
  if((pawns & ~FileABB) == EmptyBoardBB) {
    // Does the defending king block the pawns?
    Square ksq = pos.king_square(weakerSide);
    if(square_distance(ksq, relative_square(strongerSide, SQ_A8)) <= 1)
      return ScaleFactor(0);
    else if(square_file(ksq) == FILE_A &&
       (in_front_bb(strongerSide, ksq) & pawns) == EmptyBoardBB)
      return ScaleFactor(0);
    else
      return SCALE_FACTOR_NONE;
  }
  // Are all pawns on the 'h' file?
  else if((pawns & ~FileHBB) == EmptyBoardBB) {
    // Does the defending king block the pawns?
    Square ksq = pos.king_square(weakerSide);
    if(square_distance(ksq, relative_square(strongerSide, SQ_H8)) <= 1)
      return ScaleFactor(0);
    else if(square_file(ksq) == FILE_H &&
       (in_front_bb(strongerSide, ksq) & pawns) == EmptyBoardBB)
      return ScaleFactor(0);
    else
      return SCALE_FACTOR_NONE;
  }
  else
    return SCALE_FACTOR_NONE;
}


/// KBPKBScalingFunction scales KBP vs KB endgames.  There are two rules:
/// If the defending king is somewhere along the path of the pawn, and the
/// square of the king is not of the same color as the stronger side's bishop,
/// it's a draw.  If the two bishops have opposite color, it's almost always
/// a draw.

ScaleFactor KBPKBScalingFunction::apply(const Position &pos) {
  assert(pos.non_pawn_material(strongerSide) == BishopValueMidgame);
  assert(pos.bishop_count(strongerSide) == 1);
  assert(pos.pawn_count(strongerSide) == 1);
  assert(pos.non_pawn_material(weakerSide) == BishopValueMidgame);
  assert(pos.bishop_count(weakerSide) == 1);
  assert(pos.pawn_count(weakerSide) == 0);

  Square pawnSq = pos.pawn_list(strongerSide, 0);
  Square strongerBishopSq = pos.bishop_list(strongerSide, 0);
  Square weakerBishopSq = pos.bishop_list(weakerSide, 0);
  Square weakerKingSq = pos.king_square(weakerSide);

  // Case 1: Defending king blocks the pawn, and cannot be driven away.
  if(square_file(weakerKingSq) == square_file(pawnSq)
     && pawn_rank(strongerSide, pawnSq) < pawn_rank(strongerSide, weakerKingSq)
     && (square_color(weakerKingSq) != square_color(strongerBishopSq)
         || pawn_rank(strongerSide, weakerKingSq) <= RANK_6))
    return ScaleFactor(0);

  // Case 2: Opposite colored bishops.
  if(square_color(strongerBishopSq) != square_color(weakerBishopSq)) {
    
    // We assume that the position is drawn in the following three situations:
    //  
    //   a. The pawn is on rank 5 or further back.
    //   b. The defending king is somewhere in the pawn's path.
    //   c. The defending bishop attacks some square along the pawn's path,
    //      and is at least three squares away from the pawn.
    //
    // These rules are probably not perfect, but in practice they work
    // reasonably well.
    
    if(pawn_rank(strongerSide, pawnSq) <= RANK_5)
      return ScaleFactor(0);
    else {
      Bitboard ray =
        ray_bb(pawnSq, (strongerSide == WHITE)? SIGNED_DIR_N : SIGNED_DIR_S);
      if(ray & pos.kings(weakerSide))
        return ScaleFactor(0);
      if((pos.bishop_attacks(weakerBishopSq) & ray)
         && square_distance(weakerBishopSq, pawnSq) >= 3)
        return ScaleFactor(0);
    }
  }
  return SCALE_FACTOR_NONE;
}


/// KBPKNScalingFunction scales KBP vs KN endgames.  There is a single rule:
/// If the defending king is somewhere along the path of the pawn, and the
/// square of the king is not of the same color as the stronger side's bishop,
/// it's a draw.

ScaleFactor KBPKNScalingFunction::apply(const Position &pos) {
  assert(pos.non_pawn_material(strongerSide) == BishopValueMidgame);
  assert(pos.bishop_count(strongerSide) == 1);
  assert(pos.pawn_count(strongerSide) == 1);
  assert(pos.non_pawn_material(weakerSide) == KnightValueMidgame);
  assert(pos.knight_count(weakerSide) == 1);
  assert(pos.pawn_count(weakerSide) == 0);

  Square pawnSq = pos.pawn_list(strongerSide, 0);
  Square strongerBishopSq = pos.bishop_list(strongerSide, 0);
  Square weakerKingSq = pos.king_square(weakerSide);
      
  if(square_file(weakerKingSq) == square_file(pawnSq)
     && pawn_rank(strongerSide, pawnSq) < pawn_rank(strongerSide, weakerKingSq)
     && (square_color(weakerKingSq) != square_color(strongerBishopSq)
         || pawn_rank(strongerSide, weakerKingSq) <= RANK_6))
    return ScaleFactor(0);

  return SCALE_FACTOR_NONE;
}


/// KNPKScalingFunction scales KNP vs K endgames.  There is a single rule:
/// If the pawn is a rook pawn on the 7th rank and the defending king prevents
/// the pawn from advancing, the position is drawn.

ScaleFactor KNPKScalingFunction::apply(const Position &pos) {
  assert(pos.non_pawn_material(strongerSide) == KnightValueMidgame);
  assert(pos.knight_count(strongerSide) == 1);
  assert(pos.pawn_count(strongerSide) == 1);
  assert(pos.non_pawn_material(weakerSide) == Value(0));
  assert(pos.pawn_count(weakerSide) == 0);

  Square pawnSq = pos.pawn_list(strongerSide, 0);
  Square weakerKingSq = pos.king_square(weakerSide);

  if(pawnSq == relative_square(strongerSide, SQ_A7) &&
     square_distance(weakerKingSq, relative_square(strongerSide, SQ_A8)) <= 1)
    return ScaleFactor(0);

  if(pawnSq == relative_square(strongerSide, SQ_H7) &&
     square_distance(weakerKingSq, relative_square(strongerSide, SQ_H8)) <= 1)
    return ScaleFactor(0);

  return SCALE_FACTOR_NONE;
}


/// KPKPScalingFunction scales KP vs KP endgames.  This is done by removing
/// the weakest side's pawn and probing the KP vs K bitbase:  If the weakest
/// side has a draw without the pawn, she probably has at least a draw with
/// the pawn as well.  The exception is when the stronger side's pawn is far
/// advanced and not on a rook file; in this case it is often possible to win
/// (e.g. 8/4k3/3p4/3P4/6K1/8/8/8 w - - 0 1).

ScaleFactor KPKPScalingFunction::apply(const Position &pos) {
  assert(pos.non_pawn_material(strongerSide) == Value(0));
  assert(pos.non_pawn_material(weakerSide) == Value(0));
  assert(pos.pawn_count(WHITE) == 1);
  assert(pos.pawn_count(BLACK) == 1);

  Square wksq, bksq, wpsq;
  Color stm;

  if(strongerSide == WHITE) {
    wksq = pos.king_square(WHITE);
    bksq = pos.king_square(BLACK);
    wpsq = pos.pawn_list(WHITE, 0);
    stm = pos.side_to_move();
  }
  else {
    wksq = flip_square(pos.king_square(BLACK));
    bksq = flip_square(pos.king_square(WHITE));
    wpsq = flip_square(pos.pawn_list(BLACK, 0));
    stm = opposite_color(pos.side_to_move());
  }

  if(square_file(wpsq) >= FILE_E) {
    wksq = flop_square(wksq);
    bksq = flop_square(bksq);
    wpsq = flop_square(wpsq);
  }

  // If the pawn has advanced to the fifth rank or further, and is not a
  // rook pawn, it's too dangerous to assume that it's at least a draw.
  if(square_rank(wpsq) >= RANK_5 && square_file(wpsq) != FILE_A)
    return SCALE_FACTOR_NONE;

  // Probe the KPK bitbase with the weakest side's pawn removed.  If it's a
  // draw, it's probably at least a draw even with the pawn.
  if(probe_kpk(wksq, wpsq, bksq, stm))
    return SCALE_FACTOR_NONE;
  else
    return ScaleFactor(0);
}


/// init_bitbases() is called during program initialization, and simply loads
/// bitbases from disk into memory.  At the moment, there is only the bitbase
/// for KP vs K, but we may decide to add other bitbases later.

void init_bitbases() {
  generate_kpk_bitbase(KPKBitbase);
}


namespace {

  // Probe the KP vs K bitbase:

  int probe_kpk(Square wksq, Square wpsq, Square bksq, Color stm) {
    int wp = int(square_file(wpsq)) + (int(square_rank(wpsq)) - 1) * 4;
    int index = int(stm) + 2*int(bksq) + 128*int(wksq) + 8192*wp;
    
    assert(index >= 0 && index < 24576*8);
    return KPKBitbase[index/8] & (1 << (index&7));
  }
  
}